3.20.82 \(\int \frac {f+g x}{(d+e x) \sqrt {c d^2-b d e-b e^2 x-c e^2 x^2}} \, dx\)

Optimal. Leaf size=121 \[ \frac {g \tan ^{-1}\left (\frac {e (b+2 c x)}{2 \sqrt {c} \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}\right )}{\sqrt {c} e^2}-\frac {2 (e f-d g) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}{e^2 (d+e x) (2 c d-b e)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {792, 621, 204} \begin {gather*} \frac {g \tan ^{-1}\left (\frac {e (b+2 c x)}{2 \sqrt {c} \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}\right )}{\sqrt {c} e^2}-\frac {2 (e f-d g) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}{e^2 (d+e x) (2 c d-b e)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(f + g*x)/((d + e*x)*Sqrt[c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2]),x]

[Out]

(-2*(e*f - d*g)*Sqrt[d*(c*d - b*e) - b*e^2*x - c*e^2*x^2])/(e^2*(2*c*d - b*e)*(d + e*x)) + (g*ArcTan[(e*(b + 2
*c*x))/(2*Sqrt[c]*Sqrt[d*(c*d - b*e) - b*e^2*x - c*e^2*x^2])])/(Sqrt[c]*e^2)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rubi steps

\begin {align*} \int \frac {f+g x}{(d+e x) \sqrt {c d^2-b d e-b e^2 x-c e^2 x^2}} \, dx &=-\frac {2 (e f-d g) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}{e^2 (2 c d-b e) (d+e x)}+\frac {g \int \frac {1}{\sqrt {c d^2-b d e-b e^2 x-c e^2 x^2}} \, dx}{e}\\ &=-\frac {2 (e f-d g) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}{e^2 (2 c d-b e) (d+e x)}+\frac {(2 g) \operatorname {Subst}\left (\int \frac {1}{-4 c e^2-x^2} \, dx,x,\frac {-b e^2-2 c e^2 x}{\sqrt {c d^2-b d e-b e^2 x-c e^2 x^2}}\right )}{e}\\ &=-\frac {2 (e f-d g) \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}{e^2 (2 c d-b e) (d+e x)}+\frac {g \tan ^{-1}\left (\frac {e (b+2 c x)}{2 \sqrt {c} \sqrt {d (c d-b e)-b e^2 x-c e^2 x^2}}\right )}{\sqrt {c} e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 189, normalized size = 1.56 \begin {gather*} -\frac {2 \left (\sqrt {c} \sqrt {e (2 c d-b e)} (e f-d g) (b e-c d+c e x)+\sqrt {e} g \sqrt {d+e x} (b e-2 c d)^2 \sqrt {\frac {b e-c d+c e x}{b e-2 c d}} \sin ^{-1}\left (\frac {\sqrt {c} \sqrt {e} \sqrt {d+e x}}{\sqrt {e (2 c d-b e)}}\right )\right )}{\sqrt {c} e^2 \sqrt {e (2 c d-b e)} (b e-2 c d) \sqrt {(d+e x) (c (d-e x)-b e)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)/((d + e*x)*Sqrt[c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2]),x]

[Out]

(-2*(Sqrt[c]*Sqrt[e*(2*c*d - b*e)]*(e*f - d*g)*(-(c*d) + b*e + c*e*x) + Sqrt[e]*(-2*c*d + b*e)^2*g*Sqrt[d + e*
x]*Sqrt[(-(c*d) + b*e + c*e*x)/(-2*c*d + b*e)]*ArcSin[(Sqrt[c]*Sqrt[e]*Sqrt[d + e*x])/Sqrt[e*(2*c*d - b*e)]]))
/(Sqrt[c]*e^2*Sqrt[e*(2*c*d - b*e)]*(-2*c*d + b*e)*Sqrt[(d + e*x)*(-(b*e) + c*(d - e*x))])

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 1.63, size = 250, normalized size = 2.07 \begin {gather*} \frac {g \sqrt {-c e^2} \log \left (b^2 e^2-8 c x \sqrt {-c e^2} \sqrt {-b d e-b e^2 x+c d^2-c e^2 x^2}-4 b c d e-4 b c e^2 x+4 c^2 d^2-8 c^2 e^2 x^2\right )}{2 c e^3}+\frac {2 (e f-d g) \sqrt {-b d e-b e^2 x+c d^2-c e^2 x^2}}{e^2 (d+e x) (b e-2 c d)}+\frac {g \tan ^{-1}\left (\frac {2 \sqrt {c} x \sqrt {-c e^2}}{b e}-\frac {2 \sqrt {c} \sqrt {-b d e-b e^2 x+c d^2-c e^2 x^2}}{b e}\right )}{\sqrt {c} e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(f + g*x)/((d + e*x)*Sqrt[c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2]),x]

[Out]

(2*(e*f - d*g)*Sqrt[c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2])/(e^2*(-2*c*d + b*e)*(d + e*x)) + (g*ArcTan[(2*Sqrt[c
]*Sqrt[-(c*e^2)]*x)/(b*e) - (2*Sqrt[c]*Sqrt[c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2])/(b*e)])/(Sqrt[c]*e^2) + (Sqr
t[-(c*e^2)]*g*Log[4*c^2*d^2 - 4*b*c*d*e + b^2*e^2 - 4*b*c*e^2*x - 8*c^2*e^2*x^2 - 8*c*Sqrt[-(c*e^2)]*x*Sqrt[c*
d^2 - b*d*e - b*e^2*x - c*e^2*x^2]])/(2*c*e^3)

________________________________________________________________________________________

fricas [A]  time = 1.22, size = 405, normalized size = 3.35 \begin {gather*} \left [-\frac {{\left ({\left (2 \, c d e - b e^{2}\right )} g x + {\left (2 \, c d^{2} - b d e\right )} g\right )} \sqrt {-c} \log \left (8 \, c^{2} e^{2} x^{2} + 8 \, b c e^{2} x - 4 \, c^{2} d^{2} + 4 \, b c d e + b^{2} e^{2} - 4 \, \sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} {\left (2 \, c e x + b e\right )} \sqrt {-c}\right ) + 4 \, \sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} {\left (c e f - c d g\right )}}{2 \, {\left (2 \, c^{2} d^{2} e^{2} - b c d e^{3} + {\left (2 \, c^{2} d e^{3} - b c e^{4}\right )} x\right )}}, -\frac {{\left ({\left (2 \, c d e - b e^{2}\right )} g x + {\left (2 \, c d^{2} - b d e\right )} g\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} {\left (2 \, c e x + b e\right )} \sqrt {c}}{2 \, {\left (c^{2} e^{2} x^{2} + b c e^{2} x - c^{2} d^{2} + b c d e\right )}}\right ) + 2 \, \sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} {\left (c e f - c d g\right )}}{2 \, c^{2} d^{2} e^{2} - b c d e^{3} + {\left (2 \, c^{2} d e^{3} - b c e^{4}\right )} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(((2*c*d*e - b*e^2)*g*x + (2*c*d^2 - b*d*e)*g)*sqrt(-c)*log(8*c^2*e^2*x^2 + 8*b*c*e^2*x - 4*c^2*d^2 + 4*
b*c*d*e + b^2*e^2 - 4*sqrt(-c*e^2*x^2 - b*e^2*x + c*d^2 - b*d*e)*(2*c*e*x + b*e)*sqrt(-c)) + 4*sqrt(-c*e^2*x^2
 - b*e^2*x + c*d^2 - b*d*e)*(c*e*f - c*d*g))/(2*c^2*d^2*e^2 - b*c*d*e^3 + (2*c^2*d*e^3 - b*c*e^4)*x), -(((2*c*
d*e - b*e^2)*g*x + (2*c*d^2 - b*d*e)*g)*sqrt(c)*arctan(1/2*sqrt(-c*e^2*x^2 - b*e^2*x + c*d^2 - b*d*e)*(2*c*e*x
 + b*e)*sqrt(c)/(c^2*e^2*x^2 + b*c*e^2*x - c^2*d^2 + b*c*d*e)) + 2*sqrt(-c*e^2*x^2 - b*e^2*x + c*d^2 - b*d*e)*
(c*e*f - c*d*g))/(2*c^2*d^2*e^2 - b*c*d*e^3 + (2*c^2*d*e^3 - b*c*e^4)*x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [A]  time = 0.06, size = 134, normalized size = 1.11 \begin {gather*} \frac {g \arctan \left (\frac {\sqrt {c \,e^{2}}\, \left (x +\frac {b}{2 c}\right )}{\sqrt {-c \,e^{2} x^{2}-b \,e^{2} x -b d e +c \,d^{2}}}\right )}{\sqrt {c \,e^{2}}\, e}-\frac {2 \left (-d g +e f \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} c \,e^{2}+\left (-b \,e^{2}+2 c d e \right ) \left (x +\frac {d}{e}\right )}}{\left (-b \,e^{2}+2 c d e \right ) \left (x +\frac {d}{e}\right ) e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)/(e*x+d)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(1/2),x)

[Out]

g/e/(c*e^2)^(1/2)*arctan((c*e^2)^(1/2)*(x+1/2*b/c)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(1/2))-2*(-d*g+e*f)/e^2/(-
b*e^2+2*c*d*e)/(x+d/e)*(-(x+d/e)^2*c*e^2+(-b*e^2+2*c*d*e)*(x+d/e))^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b*e-2*c*d>0)', see `assume?` f
or more details)Is b*e-2*c*d zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {f+g\,x}{\left (d+e\,x\right )\,\sqrt {c\,d^2-b\,d\,e-c\,e^2\,x^2-b\,e^2\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)/((d + e*x)*(c*d^2 - c*e^2*x^2 - b*d*e - b*e^2*x)^(1/2)),x)

[Out]

int((f + g*x)/((d + e*x)*(c*d^2 - c*e^2*x^2 - b*d*e - b*e^2*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {f + g x}{\sqrt {- \left (d + e x\right ) \left (b e - c d + c e x\right )} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(-c*e**2*x**2-b*e**2*x-b*d*e+c*d**2)**(1/2),x)

[Out]

Integral((f + g*x)/(sqrt(-(d + e*x)*(b*e - c*d + c*e*x))*(d + e*x)), x)

________________________________________________________________________________________